
Ph.D. QUALIFYING EXAMINATION – PART A 
 

Tuesday, January 14, 2020, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed. 
 
A1.  A square slab of uniform density and 
total mass M sits horizontally on two 
parallel cylinders whose centerlines are a 
distance L apart. The cylinders are fixed and  
rotate rapidly in opposite directions as 
shown in the figure. The coefficient of 
friction between the slab and the cylinders is . Initially, the center of the slab is located at a 
distance a from the midpoint between the cylinders. At time t = 0, the slab is released from rest.  
 
Determine the trajectory of the slab for times t > 0. 
 
 
A2.  The figure shows a cut-away side view of a 
toroidal coil with a rectangular cross section (inner 
radius a, outer radius b, height h) that carries a total 
of  N closely wound turns. 
a)  Determine the self-inductance L of the toroidal 
coil. 
A long straight wire runs along the axis of the 
toroidal coil (like the axle of a wheel).  The toroidal 
coil is connected to a resistor R.  The current in the 
long wire as a function of time is given by 

/
0( ) tI t I e  , where 0I  and  are constants. 

 
b)  Use Faraday’s Law to determine an expression 
for the emf induced in the toroidal coil and the 
induced current ( )RI t in the resistor. 

 
c)  The induced current ( )RI t in the resistor will cause a back emf in the toroidal coil. Determine 

an expression for the back emf in the coil due to the induced current ( )RI t . 

 
d)  What is the ratio of this back emf and the “direct” emf  in part (b)? 
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A3. The Pauli matrices are needed for this problem.  They are: 

1 0 0 1 0

0 1 1 0 0z x y

i

i
  

     
            

  

Initially a proton has its spin oriented in the positive x-direction,   Thus at time  0t   the spin 

wave function is (0) | x   .  From time  0t   to time t T  a magnetic field  0 ˆB B z


 is 

switched on which will cause the proton to precess in the field.  At time T  the field is instantly 

changed to 0 ˆB B y


 and the spin is again allowed to precess from time t T  to  2t T  .  The 

field is then switched off and a measurement of the x-component of the spin is measured  ˆ
xS .   

What is the probability of obtaining: 2  ?   

 

A4.  A relativistic particle of mass 𝑚 has a Lorentz factor 𝛾. It scatters off an identical particle at 
rest. After an elastic collision has taken place, it is determined that both particles have the same 
final energy. In terms of system parameters, find the angle between the directions of motion of the 
two particles after the collision. 

 

 

A5.  Consider the energy eigenvalue problem H ෡ φ = ε φ for a particle moving in 1D in the 
presence of a "repulsive" one-dimensional delta-function potential V(x) = α δ(x), were α is a 
positive real constant. 

a)  Write down the most general form of an acceptable solution to the energy eigenvalue 
equation for a state of positive energy ε, for (i)  𝑥 <  0, and  (ii)  𝑥 > 0; express your solution in 
terms of the positive constant 𝑘 = (2𝑚ε/ℏ²)ଵ/ଶ.  
 
b)  Assume continuous solutions and show that, in general, the energy eigenfunction φ has a 
discontinuity φ′ in its derivative at the origin. 
 
c)  Construct stationary solutions in which an incident particle approaches the origin from the left 
with unit amplitude, i.e.,  φ଴ = 𝑒௜௞௫, and interacts with the potential to generate a scattered wave 
having a reflected part  φ௥ = 𝑟 𝑒ି௜௞௫, for 𝑥 <  0, and a transmitted or forward scattered part 
φ௧ = 𝑡 𝑒௜௞௫, for 𝑥 > 0.  Determine the relative reflection and transmission probabilities for such 
a scattering event.  Interpret your results for large and small values of the incident momentum. 
 

 

 



 

A6.  A hollow cylinder of mass m and 
radius R rolls up an inclined plane of 
angle 𝜃 without slipping. The inclined 
plane has a mass M and is free to slide 
along the horizontal surface without 
friction. The cylinder has an initial 
velocity 𝑣଴ሬሬሬሬ⃗  up the inclined plane. The 
inclined plane is initially at rest with 
respect to the horizontal surface. 

a)  After some time the cylinder stops rotating and begins to roll back down the inclined plane. 
At this moment, what is the horizontal component of velocity of the inclined plane? 

b)  How high has the cylinder risen along the incline at this point?  

 

 

 

 

 

 

 

 

  



Ph.D. QUALIFYING EXAMINATION – PART B 
 

Wednesday, January 15, 2020, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.   
 

B1.  Find the frequency of small oscillations for the thin rod 
of mass m and length L balanced on top of the fixed half-
cylinder of radius R.  

 

B2.  A current flows down a long hollow straight wire of inner 
radius a and outer radius b.  The hollow wire is made of linear 
material with magnetic susceptibility m .  The free current 

density is given by 2 ˆfJ As z


 for a s b  , where A is a 

constant and the cylindrical coordinates are defined as ( , , )s z . 

a)  Use Ampere’s Law in matter to determine the magnetic 
field B


 in all three regions:  inside the cylindrical hole ( )s a , 

inside the cylindrical hollow wire ( )a s b  , outside the wire 
( )s b . 

b)  Determine the magnetization M


 in all three regions listed above. 

c)  Determine the volume bound current density bJ


and the bound surface current bK


. 

d)  Calculate the net bound current flowing down the wire. 

B3.  Statistical Mechanics: Effusion of ideal gas 

A cubic box of linear size L contains N particles of mass m. The particles can be considered 
classical non-interacting point masses. The system is in equilibrium at temperature T.  A small 
hole of cross section A is made in one of the walls, causing particles to escape. Find the average 
energy (per particle) of the escaping particles right after the hole is opened and compare it to the 
average energy of the particles in the box.  

Notes: The system is macroscopic, i.e., N>>1 and A<<L2.  Also, ∫ 𝑑𝑥
ஶ

଴
𝑥 𝑒𝑥𝑝(−𝑎𝑥ଶ) = 1/(2𝑎),  

∫ 𝑑𝑥
ஶ

଴
𝑥ଷ 𝑒𝑥𝑝(−𝑎𝑥ଶ) = 1/(2𝑎ଶ), and  ∫ 𝑑𝑥

ஶ

଴
𝑥ହ 𝑒𝑥𝑝(−𝑎𝑥ଶ) = 1/𝑎ଷ . 

b a 



B4.  A free particle moves in 1D along the 𝑥-axis.  At 𝑡 = 0, it's momentum space wave function 
is given by the relation 

𝜓(𝑘) = (2𝜋)ି 
ଵ
ଶ න 𝜓(𝑥) 𝑒ି௜௞௫  𝑑𝑥 = 𝐴𝑒ିఈ௞మିଶఉ௞ 

where 𝑘 = 𝑝/ℏ, and 𝛽 = 𝛽଴ + 𝑖𝛽଴ is a complex constant with real and imaginary parts equal in 
magnitude. 

a)  If a momentum measurement is made at 𝑡 = 0, what is the most likely value that will be 
obtained? 

b)  If instead, a position measurement is made at 𝑡 = 0, what is the most likely value that will be 
obtained? 

c)  What is the mean kinetic energy of this particle? 

d)  Find, up to a normalization constant, the wave function 𝜓(𝑥, 𝑡) for this state for times 𝑡 > 0.  

 

 

B5. A Michelson interferometer is used to 
measure small displacements 𝑥 of one of two 
mirrors. A laser emitting power 𝑃଴ [energy 
per unit of time] is used as a source. Each 
photon has energy ℏ𝜔. After dividing the 
beam in half by an ideal 50-50 beam-splitter, 
the individual beams are recombined and the 
power 𝑃 = 𝑃଴cosଶ(𝑘𝑥) is registered at the 
detector, where 𝑘 = 2𝜋/𝜆. Because emission 
of light by the laser is an intrinsically random 
process, the number of photons 𝑝(𝑛) arriving 
at the detector during a time 𝑇 is given by the 

Poisson distribution  𝑝(𝑛) = 𝑁௡ ௘షಿ

௡!
, where 

𝑁 is the mean value of 𝑛. Therefore, the error 
𝛿𝑥 in determining the position 𝑥 is due to 
random deviations of the power 𝑃 from its average value.  Find value(s) of 𝑥 at which the error 
(i.e. variance of 𝑥) is minimum. Assume that the duration of the measurement is equal to 𝑇. 

Hint: The error in x is due to the uncertainty in the number of photons registered by the detector.  
Thus, as a first step, determine the variance of  x in terms of the variance of  n , the photon number.  
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B6.  Consider a medium of large conductivity and low relative permeability (e.g. a plasma), so that 
the displacement current can be neglected in Maxwell's equations. Therefore 

 

𝐉 = 𝜎𝐄 ≫ 𝜕𝐃/𝜕𝑡  and  𝐁 ≈ 𝜇଴𝐇 

 

a) Show that the magnetic field satisfies the diffusion equation: D∇ଶ𝐁 = 𝜕𝐁/𝜕𝑡, where D is the 
coefficient of diffusion (your derivation will give you an expression for it). 

 

b) Suppose that at time t   =  0 the magnetic field B is uniform inside a sphere of radius 𝑅, and 
directed along the z–axis. Also, there is no field outside (this does not mean 𝜎 = 0 outside). Use 
the method of separation of variables in spherical coordinates to show that the solution for B, 
assuming 𝐁(𝐱, 𝑡) = 𝐵(𝑟, 𝑡) 𝐳ො    , must be given by 

 

𝐵(𝑟, 𝑡) =
2

𝑟
න 𝐴(𝑘)

ஶ

଴

sin(𝑘𝑟) exp(−𝑘ଶD𝑡) 𝑑𝑘 

 

As usual, it is convenient to write 𝑟𝐵 = 𝑈(𝑟)𝑇(𝑡) and use ∇ଶ𝐵 = (1/𝑟)𝑑ଶ/𝑑𝑟ଶ(𝑟𝐵). Note that 
you need only derive the r-dependence and t-dependence, as well as explain the needed integration 
and its range. You do not need to derive the explicit form of 𝐴(𝑘). 

 

c) 𝐴(𝑘) can be obtained from the initial condition.  It can then be shown that over a time 𝜏 = 𝑅ଶ/D  
the field rapidly drops to about a tenth of its value, and 𝐵 ∝ (𝑅ଶ/D𝑡)ଷ/ଶ afterwards. Assuming the 
sphere represents the core of the Earth (𝑅 ≈ 3,000 km, 𝜎 ≈ 10ହ/m), how long (i.e. 𝜏 in years) 
would it take for the Earth to lose its magnetic field? A year is approximately 3.2 ∙ 10଻s.  (This 
shows that the field must be continuously regenerated, most likely by fluid motion in the outer 
core) 

 


